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Cardioprotection with Ischemic Conditioning: The Diabetes 
Dilemma
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Ischemic conditioning paradigms used to reduce infarct size are largely based on data obtained from preclinical models that 
are devoid of the risk factors and comorbidities typically seen in patients with coronary artery disease.  In this review, we 
focus on diabetes mellitus, an established risk factor for cardiovascular disease, and summarize our current understanding of 
the impact of type-2 and type-1 diabetes on conditioning-induced cardioprotection.
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Introduction
A wealth of preclinical evidence has established that 
ischemic conditioning – encompassing the phenomena of 
preconditioning, postconditioning, and remote conditioning – 
is profoundly cardioprotective, evoking a significant infarct-
sparing effect in models ranging from cardiomyocytes in 
culture to isolated buffer-perfused hearts to in vivo models 
of myocardial ischemia-reperfusion (I-R) (Hausenloy et al., 
2016; Przyklenk, 2013).  These data have provided the impetus 
for the launch of Phase II and Phase III trials that seek to 
translate the concept of conditioning-induced cardioprotection 
to patients with cardiovascular disease (Heusch, 2013; Heusch 
et al., 2016; Ovize et al., 2013).  However, in contrast to the 
consensus among preclinical studies that ischemic conditioning 
reduces infarct size, the outcomes of clinical trials completed 
to date have been variable (ranging from positive to neutral 
to deleterious). Thus progress toward clinical translation has 
aptly been described as “somewhere between frustrating and 
disappointing” (Schevchuck et al., 2013).  

Various explanations have been raised to explain the apparent 
incongruity between the efficacy of ischemic conditioning in 
preclinical and clinical studies (Garratt et al., 2016; Heusch et 
al., 2016; Heusch et al., 2017; Przyklenk et al., 2017). However, 
one issue that we believe merits scrutiny and discussion is 
the clinical relevance of the preclinical models that have been 
utilized.  In this regard, it is noteworthy that the overwhelming 
majority of preclinical studies have used healthy juvenile 
or adult animal cohorts that are devoid of the constellation 
of clinically relevant risk factors and comorbidities seen in 
patients with coronary artery disease (Ferdinandy et al., 2014; 

Heusch, 2017; McCafferty et al., 2014; Miki et al., 2012; 
Przyklenk, 2011; Przyklenk, 2013; Przyklenk, 2015).  The 
importance of this issue extends beyond simple choices in study 
design: i.e., there is a growing body of literature suggesting that 
these risk factors and comorbidities (including, most notably, 
diabetes, aging, hypertension, and hypercholesterolemia) are 
accompanied by dysregulation of multiple components of the 
signal transduction pathways that play requisite mechanistic 
roles in reducing infarct size with ischemic conditioning 
(Ferdinandy et al., 2014; Pipicz et al., 2018; Przyklenk, 2011; 
Przyklenk, 2013; Przyklenk, 2015; Saeid et al., 2018; Varga et 
al., 2015).  

In the current review, we focus specifically on diabetes 
mellitus, an established risk factor for cardiovascular disease 
that affects ~8.5% of adults worldwide and is associated with 
a significant ~3-fold higher risk of acute myocardial infarction 
(WHO, 2018; Wider et al., 2014).  Our goal is to provide a 
state-of-the-art summary of our present understanding of the 
impact of type-2 and type-1 diabetes on conditioning-induced 
cardioprotection.

Efficacy of ischemic conditioning in animal models of 
diabetes: a preclinical consensus? 
Studies on ischemic conditioning in the context of diabetes 
have used various established animal models. Type-1 diabetes 
has been induced in rodents, rabbits, and in large animal (canine) 
models by single or repeated injection of the cytotoxic glucose 
analogues streptozotocin and alloxan. Although the mechanisms 
of toxicity are distinct, diabetogenic doses of streptozotocin and 
alloxan cause necrosis of insulin-producing beta cells, resulting 
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in sustained hyperglycemia and insulinopenia within 48 hours 
(Lenzen, 2008).  For protocols that have focused on ischemic 
conditioning in type-2 diabetes, rodent models in which key 
genes have been mutated (in particular, the leptin gene or its 
receptor) or wild-type mice fed high-fat and high-glucose diets 
have largely been used.  In these models, hyperglycemia is 
caused by insulin resistance and is associated with additional 
metabolic derangements (including symptoms of metabolic 
syndrome such as hyperlipidemia), which may affect the 
response of heart ischemic conditioning or ischemia-reperfusion 
(I-R) injury per se (Fuentes-Antras et al., 2015).

Effect of experimental diabetes on sensitivity to myocardial I-R
Infarct size and clinical outcome are decidedly worse in the 
type-1 and type-2 diabetic population (Alegria et al., 2007; 
Chowdhry et al., 2007; Frustaci et al., 2000; Go et al., 2014; 
Haffner et al., 1998; Krempf et al., 2010; Marso et al., 2007; 
Mukamal et al., 2001; Murcia et al., 2004; Zia et al., 2014).  In 
apparent contrast, the cardiac consequences of diabetes and 
hyperglycemia are less clear in animal models: diabetes has 
been reported to exacerbate the sensitivity to I-R, and increase 
myocardial infarct size, to render the heart resistant to I-R 
injury, or to have no effect (Liu et al., 1993; Miki et al., 2012; 
Paulson, 1997; Wider et al., 2018).  This variation in outcomes 
may be explained by differences in experimental conditions 
including: i) the duration and severity of diabetes; ii) the 
glycemic index; iii) the presence or absence of dyslipidemia 
and obesity; as well as iv) the severity and duration of ischemia 
(Paulson, 1997; Whittington et al., 2012).

The big picture: ischemic conditioning in preclinical models 
of diabetes
Despite the aforementioned variations in experimental design 
among models and the accompanying differences in the 
consequences of I-R in control cohorts, there is a growing 
preclinical consensus that the efficacy of ischemic conditioning 

(including preconditioning, postconditioning, and remote 
conditioning) is diminished in the setting of diabetes.  Of 
the 32 studies published to date that have measured infarct 
size (the acknowledged gold standard for the assessment of 
cardioprotection [Botker et al., 2018; Lindsey et al., 2018]), 
27 (84%) reported that the infarct-sparing effect of ischemic 
conditioning was partially or completely attenuated in models 
of type-1 and type-2 diabetes (Badalzadeh et al., 2012; Bouhidel 
et al., 2008; Drenger et al., 2011; Fan et al., 2012; Galagudza 
et al., 2007; Hausenloy et al., 2013; Hjortbak et al., 2018; Ji et 
al., 2013; Katakam et al., 2007; Kersten et al., 2000; Kiss et al., 
2014; Kristiansen et al., 2004; Lacerda et al., 2012; Liu et al., 
2013; Liu et al., 1993; Liu et al., 2018; Nieszner et al., 2002; 
Oosterlinck et al., 2013; Potier et al., 2013; Przyklenk et al., 
2011; Shi-ting, 2010; Tsang et al., 2005; Vinokur et al., 2013; 
Wagner et al., 2008; Wang et al., 2018; Whittington et al., 2013; 
Wider et al., 2018; Xue et al., 2016; Yadav et al., 2010; Zhou 
et al., 2017; Zhu et al., 2012; Zhu et al., 2011); summarized in 
Tables 1-3.  Moreover, among these, only one preclinical study 
concluded that type-2 diabetes did not alter the efficacy of 
ischemic conditioning in reducing infarct size (Hjortbak et al., 
2018).

Taken together, these preclinical data provide three 
additional and overarching insights into ischemic conditioning 
in diabetic models. First, the concept of an attenuation in the 
efficacy of ischemic conditioning was a consistent finding, 
irrespective of the species and model that was used (Tables 
1-3), thereby suggesting that cardiac sensitivity to metabolic 
dysregulation is a common and consistent theme (Miki et al., 
2012; Wider et al., 2014).  Second, diabetes may not abrogate 
the infarct-sparing effect of ischemic conditioning but, rather, 
may increase the threshold required to achieve protection: i.e., 
a stronger stimulus (increased number of ischemic conditioning 
cycles) may be required to reach the protective threshold.  For 
example, there are three reports that one cycle of ischemic 
preconditioning had no protective effect, whereas amplification 

Table 1. Summary of Published Preclinical Studies: Ischemic Preconditioning

* induced by injection of streptozotocin or alloxan.
Abbreviations: KATP = mitochondrial ATP-sensitive potassium channel; GLUT4 = glucose transporter type 4; GSK-3β = glycogen synthase 
kinase-3β.
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to three cycles of brief I-R reduced infarct size in Goto-
Kakizaki rats, a non-obese model of diabetes (Hausenloy et 
al., 2013; Tsang et al., 2005; Whittington et al., 2013).  Finally, 
and perhaps not surprisingly, there is an apparent temporal or 
aging component to the diabetes-associated loss in efficacy of 
ischemic conditioning.  This concept is illustrated by evidence 
that ischemic preconditioning effectively reduced infarct size 
in 3- to 8-month old Goto-Kakizaki rats but had no benefit after 
12 months of age (Whittington et al., 2013).  Furthermore, in 
the small number of studies that reported a persistent benefit 
of ischemic conditioning in the setting of diabetes, all utilized 
animals in the very early stage of type-1 diabetes; i.e., diabetic 
cohorts had been injected with streptozotocin 5-10 days before 
the ischemic event (Lacerda et al., 2012; Zhu et al., 2011). 
These results provide further support for the concept that 
the effect of diabetes on infarct size reduction with ischemic 
conditioning is dependent on the duration of the disease. 

A deeper dive: effect of diabetes on preconditioning-, 
postconditioning-, and remote preconditioning-induced 
infarct size reduction
Ischemic preconditioning  is the archetype among the 
conditioning paradigms and thus, is the benchmark and gold 
standard of conditioning-induced cardioprotection.  Of the 15 
studies that assessed the efficacy of ischemic preconditioning 
in diabetic models, 13 (87%) concluded that the infarct-sparing 
effect of ischemic preconditioning is attenuated or eliminated: 
(Galagudza et al., 2007; Hausenloy et al., 2013; Hjortbak 
et al., 2018; Ji et al., 2013; Katakam et al., 2007; Kersten et 
al., 2000; Kristiansen et al., 2004; Liu et al., 1993; Liu et al., 
2018; Nieszner et al., 2002; Shi-ting, 2010; Tsang et al., 2005; 
Vinokur et al., 2013; Whittington et al., 2013; Yadav et al., 
2010; Zhu et al., 2011); see Table 1.

Investigations into the molecular mechanisms that may 
contribute to the diabetes-associated loss in efficacy of ischemic 
preconditioning have, in most studies, focused on possible 
defects in elements of the so-called reperfusion injury salvage 
kinase (RISK) and survival activating factor enhancement 
(SAFE) pathways – i.e., the two pathways, in addition to nitric 
oxide/protein kinase G (NO/PKG) signaling, that are considered 
to play pivotal roles in conditioning-induced cardioprotection 
(Hausenloy et al., 2016; Heusch, 2015; Przyklenk, 2013).  In 
this regard, impaired phosphorylation of Akt was identified in 
both diabetic Goto-Kakizaki rats and streptozotocin-induced 
diabetes in Sprague Dawley rats (Ji et al., 2013; Tsang et al., 
2005), whereas glycogen synthase kinase-3β (GSK-3β), the 
inhibition of which is involved as a distal component in the 
RISK pathway, is reportedly activated in diabetic myocardium 
(Eldar-Finkelman et al., 1999; Gross et al., 2004).  Interestingly, 
while ischemic preconditioning was not protective in 
streptozotocin-induced diabetic rats, direct pharmacologic 
inhibition of GSK-3β reduced infarct size, supporting the 
concept that the defect in cardioprotective signaling is upstream 
of GSK-3β (Yadav et al., 2010).  Finally, the loss in efficacy of 
ischemic preconditioning in the setting of diabetes has also been 
attributed to defects in mitochondrial-associated mechanisms 
of protection (including impaired activation of mitochondrial 
KATP channels and aberrant hexokinase translocation (Gurel et 
al., 2013; Hassouna et al., 2006; Katakam et al., 2007)), as well 
as a diabetes-associated upregulation of autophagy (Liu et al., 
2018).

Similarly, the majority of preclinical studies that have used 
ischemic postconditioning as the protective stimulus found 
that cardioprotection was lost or attenuated in diabetic models 
(12 of 13 studies; 92%: see Table 2).  As with preconditioning, 
dysregulation of one or more components of the RISK, 
SAFE, and NO/PKG pathways in diabetic models has been 
implicated to contribute to the compromised cardioprotection, 

with defects in a diverse array of candidates, including Akt, 
GSK-3β, extracellular signal-regulated kinase (ERK), p70s6 
kinase, and 5' adenosine monophosphate-activated protein 
kinase (AMPK) (Bouhidel et al., 2008; Fan et al., 2012; Liu et 
al., 2013; Przyklenk et al., 2011; Wagner et al., 2008), as well 
as signal transducer and activator of transcription 3 (STAT3) 
and NO synthase (Badalzadeh et al., 2012; Drenger et al., 
2011; Fan et al., 2012) having been identified. An additional, 
novel culprit may be phosphatase and tensin homolog 
(PTEN), a negative regulator of phosphoinositide 3-kinase/
Akt signaling. There is evidence that, in diabetic myocardium, 
PTEN is resistant to deactivation by ischemic postconditioning 
(thereby exerting a molecular brake on the upregulation of 
cardioprotective signaling) – a defect that purportedly can be 
mitigated (and cardioprotection restored) by pharmacologic 
inhibition of PTEN (Xue et al., 2016).  Lastly, aberrations in 
autophagy have also been implicated.  However, contrary to the 
aforementioned upregulation in autophagy in hearts from rats 
with streptozotocin-induced diabetes (Liu et al., 2018), others 
have concluded, using the same model, that: i) autophagy is 
repressed in the setting of diabetes, and ii) the infarct-sparing 
effect of postconditioning is re-established in response to 
genetic and pharmacologic upregulation of autophagy (Zhou 
et al., 2017).  The reasons for this discrepancy are unclear, but 
may reflect the complexities of this still poorly understood 
phenomenon, particularly under pathophysiologic conditions of 
stress and cardioprotection (Dong et al., 2010; Przyklenk et al., 
2012).

Remarkably, there are at present only four published studies 
that have investigated infarct size reduction with remote 
preconditioning in preclinical models of diabetes.  Among these, 
two have reported persistent and significant cardioprotection, 
while the remaining two studies found a loss in efficacy (Table 
3). 

Our group provided the first and only study to date 
conducted in the setting of type-2 diabetes (Wider et al., 2018), 
Using 10-12 week old Zucker Fatty rats (an early stage time 
point characterized by modest elevations in non-fasting blood 
glucose), our results revealed that remote preconditioning, 
initiated by the standard stimulus of four 5-minute episodes of 
bilateral hindlimb ischemia, failed to reduce infarct size (Figure 
1).  This loss in protection did not correlate with plasma glucose 
concentration, thereby suggesting that the defect was not 
caused by hyperglycemia per se (Wider et al., 2018).  Rather, 
focusing on the hallmark of remote conditioning (that is, the 
communication of the cardioprotective signal from the site of 
the remote conditioning stimulus to the at-risk myocardium 
(Hausenloy et al., 2016; Pickard et al., 2015; Przyklenk, 

Figure 1. (A) Infarct size, expressed as a % of the myocardium at risk 
(mean ± SEM), for Zucker Lean and Zucker Fatty rats randomized to 
receive remote ischemic preconditioning (RIPC) or a time-matched 
control period.  **p<0.01 versus the Zucker Lean control group.  (B) 
Images of heart slices obtained from one control and one RIPC-
treated rat from the Zucker Lean and Zucker Fatty cohorts.  Heart 
slices were incubated in triphenyltetrazolium chloride; using this 
method, viable myocardium stains red while areas of necrosis 
remain unstained and thus appear pale. Reprinted with permission 
from Wider et al., 2018.
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2013)), we found evidence that the production or transfer of 
humoral blood-borne protective factor(s) in response to the 
preconditioning stimulus was impaired in Zucker Fatty rats 
when compared with matched normoglycemic Zucker Lean 
cohorts.  Specifically, serum harvested from Zucker Lean rats 
following hindlimb ischemia and applied to cultured HL-1 
cardiomyocytes rendered the cells resistant to a subsequent 
episode of hypoxia-reoxygenation, whereas serum from Zucker 
Fatty rats either had no cytoprotective effect or, for a specific 
sub-fraction of serum, exacerbated HL-1 cell death (Wider 
et al., 2018).  Despite an exploratory proteomic analysis 
(Wider et al., 2018), the identity of the protective humoral 
factor(s) released in normoglycemic rats in response to the 
remote preconditioning stimulus and the identity of the toxic 
circulating factor(s) released in the diabetic Zucker Fatty rats 
remain unknown.  Interestingly, one previous study used a 
similar experimental strategy but, in this case, collected plasma 
from diabetic human subjects following a remote conditioning 
stimulus and assessed its cardioprotective efficacy in isolated 
buffer-perfused rabbit hearts subjected to global I-R.  Diabetes 
was associated with a defect in the humoral transfer of a 
protective trigger, but this defect was limited to a subset of 
diabetic patients displaying peripheral neuropathy (Jensen et 
al., 2012) – a factor that, in all likelihood, did not contribute to 
our observations made using Zucker Fatty rats treated before 
the development of neuropathy in our model (Oltman et al., 
2005).

Among the remaining three studies, all of which used the 
rat model of streptozotocin-induced type-1 diabetes, outcomes 
have been mixed.  One study reported that the reduction in 
infarct size with remote preconditioning was diminished 
4-5 weeks after induction of diabetes, citing a defect in 
the generation of cardioprotective NO (Kiss et al., 2014).  
Conversely, in rats in which remote ischemic conditioning was 
commenced 8 weeks after streptozotocin injection, significant 
protective was still observed; however, an atypical stimulus – 
hindlimb ischemia applied repeatedly (daily for 3 days) was 
used (Wang et al., 2018).  These results are consistent with the 
concept that an amplified (in this case, repeated) conditioning 
stimuli may be capable of achieving a protective threshold 

in diabetic myocardium, either by augmenting conventional 
cardioprotective signaling or via mechanisms that differ from 
acute kinase phosphorylation. Although the paradigm of 
repeated remote preconditioning is a recent development and, 
thus, its mechanisms are not well-understood (Thijssen et al., 
2016), evidence suggests that repeated stimulus influences 
vascular function, myocardial gene expression, circulating 
factors, and effectors that are distinct from the acute standard 
stimulus (Epps et al., 2016; Luca et al., 2013; Wang et al., 
2018; Yamaguchi et al., 2015).  The fourth study also reported 
persistent cardioprotection using an amplified preconditioning 
stimulus (Zhu et al., 2011), however, as animals in this latter 
protocol were subjected to the conditioning stimulus only 1 
week after induction of diabetes, the efficacy of conditioning-
induced cardioprotection may not yet have been compromised.  

Clues into clinical relevance?
Taken together, and despite the substantial heterogeneity in 
experimental design and mechanistic endpoints among the small 
number of published reports, the majority of preclinical studies 
have concluded that the infarct-sparing effect of ischemic 
conditioning is attenuated or lost in genetic and drug-induced 
models of diabetes (Tables 1-3; Figure 1).  Nonetheless, it must 
be acknowledged that these data were obtained in models that 
do not fully mimic the scope and often years-long duration of 
the disease in patients.  Thus, the obvious question is: are the 
aforementioned observations of a diabetes-associated defect in 
conditioning-induced cardioprotection clinically relevant?

A handful of Phase II trials took the proactive step, 
presumably based in part on these emerging preclinical 
concerns, and prospectively excluded diabetic patients from 
enrollment (Heusch et al., 2012; Kottenberg et al., 2012; 
Thielmann et al., 2010; Venugopal et al., 2009) – a practice that 
has also been applied to studies of ischemic conditioning in 
other organs (Venugopal et al., 2010).  In terms of more direct 
evidence, there are clinical data, albeit limited, that appear to 
corroborate the preclinical outcomes.  For example, prospective 
subset analyses of larger Phase II studies revealed that preinfarct 
angina (considered a proxy for ischemic preconditioning) failed 
to limit infarct size (assessed by cardiac enzyme release) in the 

Table 2. Summary of Published Preclinical Studies: Postconditioning

* induced by injection of streptozotocin; ** injection of streptozotocin + high fat diet.
Abbreviations: AMPK =5' adenosine monophosphate-activated protein kinase; Echs1 = enoyl coenzyme A hydratate, short chain 1; eNOS = 
endothelial nitric oxide synthase; ERK = extracellular signal-regulated kinase; GSK-3β = glycogen synthase kinase-3β; HSP20 = heat shock 
protein 20; mTOR = mammalian target of rapamycin; NO = nitric oxide; PTEN = signal transducer and activator of transcription 3; STAT3 = 
signal transducer and activator of transcription 3.



REVIEW ARTICLE

Conditioning Medicine 2019 | www.conditionmed.org

Conditioning Medicine | 2019, 2(1):10-17

14

cohort with type-2 diabetes, while there was a trend toward 
exacerbation of infarct size with postconditioning in diabetic 
subjects (Ishihara et al., 2001; Yetgin et al., 2014). Similarly, 
remote preconditioning was reportedly ineffective in attenuating 
cardiac enzyme release in diabetic patients undergoing surgical 
Rcoronary revascularization (Kottenberg et al., 2014), whereas 
in the setting of elective percutaneous coronary intervention 
(PCI), the incidence of peri-procedural myocardial infarction 
was either unchanged (rather than decreased: (Xu et al., 2014)) 
or exacerbated (Carrasco-Chinchilla et al., 2013) in patients 
with diabetes.  Finally, as an interesting corollary in apparent 
support of preclinical reports that cardioprotection can be re-
established by direct pharmacologic activation of key signaling 
elements, intracoronary administration of adenosine during PCI 
has been shown to act as an effective ‘conditioning-mimetic’ 
in diabetic patients (Shehata, 2014).  However, and of potential 
importance: despite the aforementioned outcomes, a meta-
analysis assessing the aggregate data from five trials concluded 
that there was no diabetes-associated loss in efficacy of remote 
preconditioning in patients undergoing elective PCI (D'Ascenzo 
et al., 2014).  

Limitations, conclusions, and future directions
It could be argued that studies conducted using preclinical 
models of type-2 and type-1 diabetes (and, in fact, all 
preclinical models) are too simplistic, and will not be helpful in 
advancing the clinical translation of ischemic conditioning. The 
preclinical models clearly do not duplicate the complexities of 
patients with cardiovascular disease – elements of complexity 
that include both the presence, in some cohorts, of multiple 
comorbidities, as well as the potential confounding effects 
of the pharmacologic therapies administered as a standard of 
care for the clinical management of these diseases.  Indeed, 
this latter concept is supported by evidence that anti-platelet 
drugs, statins, nitrates, and opiates may, in themselves, evoke 
significant cardioprotection and mimic or re-initiate the infarct-
sparing effect of ischemic conditioning (Ferdinandy et al., 
2014; Heusch, 2013; Przyklenk, 2011; Przyklenk, 2015).  
Moreover, there is evidence that, in surgical studies, the choice 
of anesthetic regimen (and, in particular, the use of propofol) 
can profoundly affect outcomes and conclusions regarding 
cardioprotection (Behmenburg et al., 2018; Garratt et al., 
2016; Heusch et al., 2016; Heusch et al., 2017), most notably 
in diabetic populations (Ansley et al., 2016).  Nonetheless, 
despite these limitations, the majority of studies conducted 
in our simplistic preclinical models of diabetes have found a 
loss in efficacy of conditioning-induced cardioprotection – an 
observation that has largely been corroborated in clinical studies 
and, we believe, warrants continued prospective investigation.
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